Skip to contents

Returns a ggproto method as a function with arguments pre-filled to their values when it was first called

Usage

ggtrace_capture_fn(x, method, cond = 1L, ...)

capture_fn(x, method, cond = 1L, ...)

Arguments

x

A ggplot object

method

A function or a ggproto method. The ggproto method may be specified using any of the following forms:

  • ggproto$method

  • namespace::ggproto$method

  • namespace:::ggproto$method

cond

When the method function should be captured. Defaults to 1L.

...

Unused.

Value

A function

Note

For functions and methods that take ..., arguments passed to ... are captured and promoted to function arguments. The captured values are available for inspection via formals().

Tracing context

When quoted expressions are passed to the cond or value argument of workflow functions they are evaluated in a special environment which we call the "tracing context".

The tracing context is "data-masked" (see rlang::eval_tidy()), and exposes an internal variable called ._counter_ which increments every time a function/method has been called by the ggplot object supplied to the x argument of workflow functions. For example, cond = quote(._counter_ == 1L) is evaluated as TRUE when the method is called for the first time. The cond argument also supports numeric shorthands like cond = 1L which evaluates to quote(._counter_ == 1L), and this is the default value of cond for all workflow functions that only return one value (e.g., ggtrace_capture_fn()). It is recommended to consult the output of ggtrace_inspect_n() and ggtrace_inspect_which() to construct expressions that condition on ._counter_.

For highjack functions like ggtrace_highjack_return(), the value about to be returned by the function/method can be accessed with returnValue() in the value argument. By default, value is set to quote(returnValue()) which simply evaluates to the return value, but directly computing on returnValue() to derive a different return value for the function/method is also possible.

Examples

library(ggplot2)

set.seed(47)
df <- as.data.frame(matrix(sample(5, 1000, TRUE), ncol = 2))
table(df)
#>    V2
#> V1   1  2  3  4  5
#>   1 28 16 15 23 21
#>   2 19 16 19 15 15
#>   3 23 22 18 21 20
#>   4 15 21 17 26 18
#>   5 20 27 26 18 21

base <- ggplot(df, aes(x = V1, y = V2))

p1 <- base + stat_summary(orientation = "x")
p1
#> No summary function supplied, defaulting to `mean_se()`


p1_compute_panel <- ggtrace_capture_fn(p1, method = StatSummary$compute_panel)
#> No summary function supplied, defaulting to `mean_se()`

# `p1_compute_panel` is a copy of the ggproto method
body(p1_compute_panel)
#> {
#>     data <- flip_data(data, flipped_aes)
#>     fun <- make_summary_fun(fun.data, fun, fun.max, fun.min, 
#>         fun.args)
#>     summarised <- summarise_by_x(data, fun)
#>     summarised$flipped_aes <- flipped_aes
#>     flip_data(summarised, flipped_aes)
#> }
ggbody(StatSummary$compute_panel, as.list = FALSE)
#> {
#>     data <- flip_data(data, flipped_aes)
#>     fun <- make_summary_fun(fun.data, fun, fun.max, fun.min, 
#>         fun.args)
#>     summarised <- summarise_by_x(data, fun)
#>     summarised$flipped_aes <- flipped_aes
#>     flip_data(summarised, flipped_aes)
#> }

# Its arguments are pre-filled (captured at runtime)
sapply(formals(p1_compute_panel), class)
#>         data       scales     fun.data          fun      fun.max      fun.min 
#> "data.frame"       "list"       "NULL"       "NULL"       "NULL"       "NULL" 
#>     fun.args        na.rm  flipped_aes 
#>       "list"    "logical"    "logical" 

# Runs as it should
p1_compute_panel()
#> No summary function supplied, defaulting to `mean_se()`
#>   x group        y     ymin     ymax PANEL flipped_aes
#> 1 1    -1 2.932039 2.782630 3.081447     1       FALSE
#> 2 2    -1 2.892857 2.738537 3.047177     1       FALSE
#> 3 3    -1 2.932692 2.791176 3.074209     1       FALSE
#> 4 4    -1 3.113402 2.975241 3.251563     1       FALSE
#> 5 5    -1 2.937500 2.807977 3.067023     1       FALSE

# You can inspect changes to its behavior outisde of ggplot
# For example, see what happens when aes is flipped via `orientation = "y"`
p1_compute_panel(flipped_aes = TRUE)
#> No summary function supplied, defaulting to `mean_se()`
#>   y group        x     xmin     xmax PANEL flipped_aes
#> 1 1    -1 2.809524 2.666881 2.952167     1        TRUE
#> 2 2    -1 3.264706 3.124729 3.404683     1        TRUE
#> 3 3    -1 3.210526 3.062456 3.358597     1        TRUE
#> 4 4    -1 3.009709 2.870024 3.149393     1        TRUE
#> 5 5    -1 3.031579 2.881586 3.181572     1        TRUE

# We confirm this output to be true when `orientation = "y"` in `stat_summary()`
p2 <- base + stat_summary(orientation = "y")
p2_compute_panel <- ggtrace_capture_fn(p2, method = StatSummary$compute_panel)
#> No summary function supplied, defaulting to `mean_se()`

identical(p1_compute_panel(flipped_aes = TRUE), p2_compute_panel())
#> No summary function supplied, defaulting to `mean_se()`
#> No summary function supplied, defaulting to `mean_se()`
#> [1] TRUE

# You can interactively explore with `debugonce(p2_compute_panel)`


# Note that the captured method looks slightly different if the method takes `...`
p3 <- base + stat_smooth() + geom_jitter()
p3
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'


p3_compute_panel <- ggtrace_capture_fn(p3, method = Stat$compute_panel)
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

# For one, the body is different - it's a "wrapper" around the captured method
body(p3_compute_panel)
#> {
#>     cur_args <- mget(names(formals(rlang::current_fn())))
#>     specs <- names(cur_args) %in% names(formals(inner))
#>     do.call(inner, c(cur_args[specs], cur_args[!specs]))
#> }

# The captured method is stored in the `"inner"` attribute
attr(p3_compute_panel, "inner")
#> function (self, data, scales, ...) 
#> {
#>     if (empty(data)) 
#>         return(data_frame0())
#>     groups <- split(data, data$group)
#>     stats <- lapply(groups, function(group) {
#>         self$compute_group(data = group, scales = scales, ...)
#>     })
#>     non_constant_columns <- character(0)
#>     stats <- mapply(function(new, old) {
#>         if (empty(new)) 
#>             return(data_frame0())
#>         old <- old[, !(names(old) %in% names(new)), drop = FALSE]
#>         non_constant <- vapply(old, vec_unique_count, integer(1)) > 
#>             1L
#>         non_constant_columns <<- c(non_constant_columns, names(old)[non_constant])
#>         vec_cbind(new, old[rep(1, nrow(new)), , drop = FALSE])
#>     }, stats, groups, SIMPLIFY = FALSE)
#>     non_constant_columns <- unique0(non_constant_columns)
#>     dropped <- non_constant_columns[!non_constant_columns %in% 
#>         self$dropped_aes]
#>     if (length(dropped) > 0) {
#>         cli::cli_warn(c("The following aesthetics were dropped during statistical transformation: {.field {dropped}}.", 
#>             i = "This can happen when ggplot fails to infer the correct grouping structure in the data.", 
#>             i = "Did you forget to specify a {.code group} aesthetic or to convert a numerical variable into a factor?"))
#>     }
#>     data_new <- vec_rbind0(!!!stats)
#>     data_new[, !names(data_new) %in% non_constant_columns, drop = FALSE]
#> }
#> <environment: 0x0000029743e2f530>

# Captured argument defaults are again available for inspection via `formals()`
# Note that arguments passed to the `...` are promoted to function arguments
names(ggformals(Stat$compute_panel))
#> [1] "self"   "data"   "scales" "..."   
names(formals(p3_compute_panel))
#>  [1] "self"        "data"        "scales"      "method"      "formula"    
#>  [6] "se"          "n"           "fullrange"   "level"       "na.rm"      
#> [11] "method.args" "span"        "xseq"        "flipped_aes"

# It works the same otherwise - plus you get the benefit of autocomplete
head(p3_compute_panel())
#>          x        y     ymin     ymax        se flipped_aes PANEL group
#> 1 1.000000 2.932039 2.656568 3.207510 0.1402053       FALSE     1    -1
#> 2 1.050633 2.928156 2.671397 3.184915 0.1306815       FALSE     1    -1
#> 3 1.101266 2.924475 2.681907 3.167044 0.1234590       FALSE     1    -1
#> 4 1.151899 2.920997 2.688081 3.153914 0.1185468       FALSE     1    -1
#> 5 1.202532 2.917722 2.690122 3.145322 0.1158405       FALSE     1    -1
#> 6 1.253165 2.914649 2.688468 3.140830 0.1151184       FALSE     1    -1
head(p3_compute_panel(level = .99)[, c("ymin", "ymax")])
#>       ymin     ymax
#> 1 2.569496 3.294582
#> 2 2.590240 3.266072
#> 3 2.605235 3.243716
#> 4 2.614459 3.227536
#> 5 2.618182 3.217263
#> 6 2.616976 3.212323
head(p3_compute_panel(flipped_aes = TRUE))
#>          y        x     xmin     xmax        se flipped_aes PANEL group
#> 1 1.000000 2.809524 2.533395 3.085653 0.1405400        TRUE     1    -1
#> 2 1.050633 2.844813 2.587716 3.101911 0.1308538        TRUE     1    -1
#> 3 1.101266 2.878797 2.636755 3.120838 0.1231908        TRUE     1    -1
#> 4 1.151899 2.911475 2.680469 3.142480 0.1175739        TRUE     1    -1
#> 5 1.202532 2.942847 2.718976 3.166717 0.1139424        TRUE     1    -1
#> 6 1.253165 2.972913 2.752581 3.193245 0.1121416        TRUE     1    -1

# Interactively explore with `debugonce(attr(p3_compute_panel, "inner"))`