
Sub-layer modularity in the Grammar of Graphics

June Choe

1 Introduction

1.1 The Grammar of Graphics

“Chart taxonomies are truly harmful to the
understanding of the meaning of graphics.”

- Lee Wilkinson (2021) 1

Wilkinson (2005)’s Grammar of Graphics (GG) is
widely regarded as an important theoretical breakthrough
in statistical graphics. Inspired by the expressive capac-
ity of the human language enabled by natural language
syntax, GG introduces an underlying generative system
unifying various chart types. Just as the arrangements
of nouns, verbs, and so on generate infinite sentence-level
meanings, so too do the different components of GG such
as Coord, Scale, and Element (a.k.a. Layer) combine to
generate an infinite number of visualizations.

GG has inspired many data visualization tools and
programming libraries over the years, including Tableau

(www.tableau.com), R’s ggplot2 (Wickham, 2016),
JavaScript’s vega-lite (Satyanarayan et al., 2017), and
more recently the Objects interface in Python’s Seaborn
version 0.12 (Waskom, 2021). The popularity of these GG
implementations are in large part due to their declarative
syntax, which abstracts away from much of the low-level
implementational details like the construction of graphi-
cal primitives (e.g., calculating the position of each rect-
angle’s four corners in a histogram). Instead, the user
simply specifies the plot at a high level of description
(e.g., geom histogram()), and it is the job of GG’s inter-
nal, derivational system to generate the plot according to
the instructions provided in the user code.

The flip side of GG’s grammatical constraint is its
expressiveness. This aspect is most pronounced in the
ability to enumerate Layers in a plot. To illustrate,
consider the so-called raincloud plot, a modern chart
type which encodes a large bundle of summary statis-
tics using a combination of familiar visualization de-
vices such as boxes-and-whiskers, density contours, and
dots (Allen et al., 2021). In implementations of GG
like ggplot2, the raincloud plot is simply a combina-
tion of those three individual elements sharing the same
x and y aesthetics—a density layer (geom density()),
a boxplot layer (geom boxplot()), and a point layer
(geom point())—and the code transparently reflects this
fact.

1.2 Sub-layer modularity

It is no wonder, then, that Layers are privileged in the
design of GG implementations like ggplot2. Common
chart types are encapsulated in the form of geom *() and
stat *() layer constructor functions, which also form the
basis of a highly productive extension ecosystem where
developers can introduce new and often domain-specific
layers to expand the vocabulary of the grammar.

In fact, ggplot2 in particular has been so success-
ful and influential in the history of GG precisely be-
cause it capitalizes on this special, privileged status of
Layers. ggplot2 and other implementations reformulate
the Layer component as itself compositional, consisting of
Stat, Geom, and Position sub-elements (Wickham, 2010).

GG ggplot2 vega-lite seaborn
Element Layer Layer Layer

Stat Transform Stat
Geom Mark Mark
Position Position Move

Table 1: A comparison of layer-internal components.2

This dual nature of Layer satisfies the best of both
worlds. On the one hand, developers can modify and ex-
tend specific Layer components like Stat or Geom, which
promotes code re-usability and eases maintenance. On
the other hand, user-facing code can selectively hide this
detail, allowing users to assume Layers as the fundamen-
tal building blocks of data visualization. At the same
time, the ability to interact with sub-layer modularity is
exposed to the user as optional arguments of layer func-
tions in ggplot2, softening this user-developer divide in
how Layers are understood in the grammar.

However, interfacing with layer-internal components
remains vastly under-utlilized by users of ggplot2 be-
cause users are seldom required or enticed to reason about
the different sub-components of a Layer. This limits their
ability to wield GG to its full expressive capacity: even
experienced users struggle to imagine a novel combina-
tion of Stats and Geoms within a Layer (e.g., a layer that
uses the "label" Geom to annotate a variable from the
"boxplot" Stat). Is this an unavoidable consequence of a
design that trades off lower-level details with ease of use?
What are the current barriers for users to acquire and
utilize sub-layer modularity for the practice of statistical
graphics and beyond?

1

1.3 Aims of this paper

In this paper, I argue that while sub-layer modularity is
indeed conceptually difficult for users, its inaccessibility
is largely driven by the fact that it cannot be selectively
learned only to the extent that it is useful for users. In-
deed, most existing resources are catered to developers;
these assume an entirely different goal (of writing exten-
sions) as well as the capacity and willingness to learn
ggplot2 internals at the implementation level (namely,
the ggproto object-oriented system). This is overwhelm-
ing for users, and more importantly, that knowledge does
not advance the user’s goal of doing more with existing
tools. Critically, ggplot2 cannot afford to overlook this
gap, as it is eventually the users who move on to become
developers and contribute to the growth of the ecosystem.

This paper outlines one general solution to this prob-
lem in the form of ggtrace (Choe, 2022), an R (R Core
Team, 2022) package designed to empower users to learn
the inner workings of ggplot2 on their own terms, by
leveraging existing skills in data wrangling and functional
programming.3 With minimal scaffolding that targets
just the parts of the internals relevant for users, ggtrace
can facilitate an understanding and appreciation of sub-
layer processes and other aspects of the internals.

The rest of this paper is organized as follows. First,
I survey some of the technical and conceptual difficulties
of sub-layer modularity that users currently face. Second,
I introduce ggtrace and demonstrate how it can expose
sub-layer processes in familiar logic. Third, I expand on
the design principles of ggtrace and showcase advanced
workflows for interacting with ggplot2 internals. In do-
ing so, I also present a case for the following corollary:

“Layer taxonomies are harmful to the user’s
understanding of the grammar of graphics.”

2 The conceptual challenge

All layers in ggplot2 have a Stat and a Geom (and a
Position), although layer functions come in stat *() or
geom *() forms, where the component assumed in the
layer is promoted to the function name. Over the course
of learning ggplot2, users eventually come to discover
that a Layer is in fact an abstraction over its components
Stat and Geom, which can be explicitly supplied by the
user via the stat or geom argument of layer functions.
What challenges lie ahead for users to understand their
nature and use them productively?

For one, it is difficult to understand the role that the
Stat and Geom play in even familiar layers. For exam-
ple, geom bar() and geom col() actually differ not in
the Geom but in their arbitrarily paired "count" and
"identity" Stat defaults, respectively. At another ex-

treme, geom smooth() shares the name with its default
stat="smooth", which makes it difficult to isolate the
contribution of the Geom vs. the Stat. Such experiences
force users to construe layers as monolithic objects; it’s a
convenient assumption that has clearly served users well,
but it replicates the problems of chart taxonomies at the
layer level: instead of boxplots and histograms, there are
boxplot layers and histogram layers.

Now consider a case where users would feel compelled
to reason about the sub-components of a layer. One of-
ten desired effect in statistical graphics is to label a value
that would otherwise be drawn with a different geometry,
such as the upper whisker of a boxplot representing the
largest observed value within Median ± 1.5 ∗ IQR.
Users may correctly identify that this requires an un-
conventional combination of the "boxplot" Stat and the
"label" Geom, and this is indeed possible in ggplot2:4

Base ggplot with ordinary boxplot layer

box_p <- ggplot(data = bp_data) +

geom_boxplot(aes(x = xvar , y = yvar))

Adding a layer annotating the upper whisker

box_p_annotated <- box_p +

geom_label(stat = "boxplot",

aes(x = xvar , label = after_stat(ymax),

y = stage(start=yvar , after_stat=ymax)))

These special, “delayed aesthetic evaluation” func-
tions inside the aes() align the Geom and the Stat at
the appropriate steps in the layer’s derivation (start and
after stat). But the necessary knowledge for even this
seemingly trivial task cannot be learned through an ac-
cumulation of experience using ggplot2 because it hides
sub-layer processes from users.

In sum, sub-layer modularity is challenging not due to
a lack of awareness or incentives. Rather, the current lim-
ited ways for users to interact with sub-layer processes fail
to scaffold the necessary mental model. The intent may
be to shield learners from the implementational details,
but I argue that there exists an overlooked, intermediate-
level abstraction which strikes a good balance: sub-layer
processes as a chain of data wrangling operations using
familiar “tidy” principles (Wickham et al., 2019). In the
following sections I show how ggtrace enables this re-
framing of the internals (Section 3) and its advanced fea-
tures for interacting with internal processes (Section 4).

2

3 Package ggtrace: a functional
interface to sub-layer processes

3.1 ggplot2 internals as data wrangling

To demonstrate the pedagogical applications of
ggtrace, let’s start by considering a bar plot of the
palmerpenguins dataset (Horst et al., 2020), counting
the number of penguins by values of the species column:

bar_p <- ggplot(penguins) +

geom_bar(aes(x = species , fill = species))

For users, sub-layer processes can be simplified as a
data wrangling pipeline that takes the input data ...

> penguins

species island

1 Adelie Torgersen

2 Adelie Torgersen

[... omitted 342 rows , 6 columns]

... and returns the “drawing-ready” data for each layer,
following the specifications from user code. Here, it’s a
tidy data where the rows correspond to the three bars
and the columns are the aesthetics for each bar, including
the internally-derived count variable mapped to y.

> ggplot2 ::layer_data(plot = bar_p, i = 1L)

fill y count prop x flipped_aes PANEL

1 #F8766D 152 152 1 1 FALSE 1

2 #00BA38 68 68 1 2 FALSE 1

3 #619CFF 124 124 1 3 FALSE 1

[... omitted 9 columns]

In the current reframing of the internals, we abstract
away from the fact that much of this is the work
of a complex OOP system called ggproto, mainly
the methods of the Layer ggproto in the form of
Layer$method().5 Instead, the new mental model of
sub-layer processes focuses on just four snapshots of
a layer’s data in the internal pipeline: the (1) in-
put and (2) output of $compute statistic(), (3) the
input of $compute geom 1(), and (4) the output of
$compute geom 2(). These stages are significant because
they inform users whether a piece of layer code is valid
given the state of a layer’s data in the middle of the
pipeline at the point it applies. The following outlines
each step’s proposed names and their relevance:

1) Before Stat: validates a layer’s choice of Stat.
2) After Stat: resolves after stat() mappings.

3) Before Geom: validates a layer’s choice of Geom.
4) After Scale: resolves after scale() mappings.

3.2 ggtrace as a pedagogical tool

The philosophy of ggtrace centers around the idea that
as long as users have the power to interact with the in-
termediate, dataframe representations of layers, then in-
tuitions about sub-layer processes should come for free.
In other words, by reducing the problem to data wran-
gling, users can use familiar tools to infer the internal
logic of ggproto methods at a high level. ggtrace pro-
vides this capability in a family of workflow functions
which come in the form ggtrace {workflow} {value}()
and share three key arguments: x, method, and cond.

ggtrace_{workflow}_{value}(

x, # 1) A ggplot object

method , # 2) The ggproto method to inspect

cond = 1L # 3) The Nth method call to target

)

For the present purpose of inspecting snapshots of
layer data at different stages of its derivation, we use the
ggtrace inspect [args|return]() functions from the
Inspect workflow. What follows is a walkthrough of the
four steps in the internals enabled by ggtrace.

3.2.1 Step 1: Before Stat

The first significant stage of layer data’s internal trans-
formation is the Before Stat step. To inspect the data at
that step, we use ggtrace inspect args() to get the list
of argument passed to Layer$compute statistic() and
extract the data element.

> ggtrace_inspect_args(x = bar_p,

+ method = ggplot2 ::: Layer$compute_statistic
+)$data
x fill PANEL group

1 1 Adelie 1 1

2 1 Adelie 1 1

[... omitted 342 rows]

At this point the data has been subsetted to keep just
the variables used in the aes(), which are renamed to
the names of the actual aesthetics, x and fill. The layer
code mapped the species column to both, and x has been
converted to integers for positioning purposes. We also
note the additional columns PANEL and group, which en-
codes the internal grouping structure of the data for later
split-apply-combine operations.

For users, the Before Stat data is significant because
it validates the layer’s choice of Stat, which in this case
is the stat="count" default of geom bar(). The count
Stat requires an x or y aesthetic, as documented in the
corresponding function ?stat count.6 Therefore, if the
layer code violates this constraint such as by mapping to
both aesthetics, then it errors specifically at the Stat:

3

> ggplot(penguins) +

+ geom_bar(aes(x = species , y = species))

Error in ‘geom_bar() ’:

! Problem while computing stat.

[...]

! ‘stat_count ()’ must only have an x or y

aesthetic.

Setting error=TRUE allows us to isolate the problem to
the presence of both x and y columns in the Before Stat,
when the Stat receives the data:

> ggtrace_inspect_args(error = TRUE ,

+ x = last_plot(),

+ method = ggplot2 ::: Layer$compute_statistic
+)$data
x y PANEL group

1 1 1 1 1

2 1 1 1 1

[... omitted 342 rows]

But as long as the Stat is satisfied, it will transform the
layer data to be inspected again in the After Stat stage.

3.2.2 Step 2: After Stat

The After Stat data reflects the work of the layer’s Stat,
which in this case simply counts the number of rows by
group. Using ggtrace inspect return(), we can see the
output of the same method:

> ggtrace_inspect_return(x = bar_p,

+ method = ggplot2 ::: Layer$compute_statistic)
count prop x width flipped_aes fill

1 152 1 1 0.9 FALSE Adelie

2 68 1 2 0.9 FALSE Chinstrap

3 124 1 3 0.9 FALSE Gentoo

1 PANEL group

1 1 1

2 1 2

3 1 3

Here, the Stat has collapsed the data to three rows
and added two summary statistics: count and prop.
The After Stat data is significant because it resolves
after stat()mappings, common in statistical layers like
geom histogram() and heavily used in extension pack-
ages for statistical graphics like ggdist (Kay, 2022b).

Our geom bar(stat="count") layer, too, has an im-
plicit y = after stat(count): this is how the bars
get height despite the user only specifying the x posi-
tional aesthetic. Critically, this after stat() mapping
is valid only because the After Stat data has a count

column present. In more technical terms, after stat()

is data-masked: the symbol count is looked up in
the (After Stat) data environment and fetched as a
vector (Wickham, 2019). Under that analogy, even a
novel application like calculating the proportion of counts
with after stat(count/sum(count)) follows straight-
forwardly from users’ existing experience in data wran-
gling, like base R’s transform() or dplyr::mutate():

> ggtrace_inspect_return(x = bar_p,

+ method = ggplot2 ::: Layer$compute_statistic
+) |> mutate(y = count/sum(count),.keep="none")

y

1 0.4418605

2 0.1976744

3 0.3604651

3.2.3 Step 3: Before Geom

after stat()mappings are resolved by the time the data
reaches the Before Geom step. In the case of our bar layer,
a y column copying the values of count is now present:

> ggtrace_inspect_args(x = bar_p,

+ method = ggplot2 ::: Layer$compute_geom_1
+)$data
y count prop x width flipped_aes

1 152 152 1 1 0.9 FALSE

2 68 68 1 2 0.9 FALSE

3 124 124 1 3 0.9 FALSE

1 fill PANEL group

1 Adelie 1 1

2 Chinstrap 1 2

3 Gentoo 1 3

Just like Before Stat, the Before Geom step is signifi-
cant because it validates that layer’s choice of Geom. As
documented in the corresponding function ?geom bar, it
requires both x and y aesthetics to be present when it
receives the data. That’s satisfied here thanks to the im-
plicit mapping of y = after stat(count).

If we instead override that default by setting the y

aesthetic to NULL, then the plot errors specifically at the
Geom: the Stat is satisfied at the start with a single map-
ping to the x aesthetic, but the Geom down the line is not.

> ggplot(penguins) +

+ geom_bar(aes(x = species , y = NULL))

Error in ‘geom_bar() ‘:

! Problem while setting up geom.

[...]

! ‘geom_bar()’ requires the following missing

aesthetics: y

The lesson for users here generalizes to unconventional
pairings of Stats and Geoms: many do not work together
out of the box, so users must figure out the appropriate
after stat() mappings to bridge the data transformed
by the Stat and the data required by the Geom.

3.2.4 Step 4: After Scale

Lastly we inspect the data at the After Scale step. At
this point, non-positional scales have transformed aes-
thetics like fill into the hexadecimal color values, and
the bar Geom has stepped in to augment the data with
bar-related aesthetics like colour and linewidth.

> ggtrace_inspect_return(x = bar_p,

+ method = ggplot2 ::: Layer$compute_geom_2)
fill y count prop x flipped_aes PANEL

4

1 #F8766D 152 152 1 1 FALSE 1

2 #00BA38 68 68 1 2 FALSE 1

3 #619CFF 124 124 1 3 FALSE 1

[...] colour linewidth linetype alpha

1 [...] NA 0.5 1 NA

2 [...] NA 0.5 1 NA

3 [...] NA 0.5 1 NA

The After Scale step represents one last opportunity
for a delayed aesthetic mapping, using the correspond-
ing function after scale(). For example, a mapping
of colour = after scale(darken(fill, 0.5)) can as-
sign each bar’s outline a colour that’s slightly darker
than its fill, using colorspace::darken(). This is
conceptually equivalent to extracting the column of color
values from the After Scale data to apply the visual trans-
formation.

> darken (.Last.value$fill , 0.5)

[1] " #961B00 " " #005B17 " " #034B93 "

3.3 Applying the mental model

For the bar layer of bar p in this walkthrough, the In-
spect workflow with ggtrace has shown that:

1) Before Stat validates the count Stat.
2)After Stat contextualizes y = after stat(count).
3) Before Geom validates the bar Geom.
4) After Scale contextualizes any after scale()s.

This mental model is a productive starting point for users
to imagine new layers from existing code. Returning to
the boxplot annotation layer, users can now reason about
sub-layer processes and build the layer code in steps.7

First is to identify the task as labelling a boxplot vari-
able, which in code is geom label(stat="boxplot") or
stat boxplot(geom="label"). Second, the aesthetics
that the boxplot Stat needs (x and y) are supplied. Third,
any additional aesthetics that the Geom needs later are
supplied; in this case it’s label, and it should be the same
as the ymax value that the Stat computes. The following
shows the layer code from this reasoning:

geom_label(stat = "boxplot", # First step

aes(x = xvar , y = yvar , # Second step

label = after_stat(ymax))) # Third step

Unfortunately, when this layer is added to the original
box p, the plot errors with the following message:8

! ‘geom_label()‘ requires the following missing

aesthetics: y

This may be puzzling since the layer code specifies
aes(y = yvar), but ggtrace provides the knowledge and
tool to debug this error: the Geom is missing an aes-
thetic, so something must be wrong with the data that it
receives. Indeed, the y column is missing from the Before
Geom data; the boxplot Stat has consumed it to return
the five-number summary across multiple columns:

> ggtrace_inspect_args(error = TRUE ,

+ x = last_plot(),

+ method = ggplot2 ::: Layer$compute_geom_1
+)$data [,1:5]

ymin lower middle upper ymax

1 0.13 0.5875 0.94 2.0100 3.58

2 0.35 1.9375 3.50 5.7825 11.35

In other words, both the boxplot Stat and the label Geom
require y, but it’s used up early by the Stat. The solu-
tion, then, is to ensure that we not only maps to y at the
start to satisfy the Stat, but also re-map to y later for the
Geom. This can be done via ggplot2’s stage() function,
with no additional changes to the mental model:

aes(y = stage(start = yvar , after_stat = ymax))

With this final piece of the puzzle, we arrive at the same
code used in Section 2 to motivate the original problem.

4 Advanced ggtrace workflows

The previous section demonstrated the power of just two
functions from ggtrace in scaffolding a mental model
of sub-layer processes. Perhaps unsurprisingly, this only
scratches the surface of what ggtrace offers. In fact, the
ambitious vision of ggtrace is to provide a unified, in-
teractive interface into ggplot2 internals to assist both
users and developers in their own goals. To provide the
fuller picture, this section introduces two other workflows
in ggtrace: Capture and Highjack.9

Figure 1: The ggtrace interface to ggplot2 internals.

4.1 Capture workflow

The Capture workflow records the execution behavior of
ggproto methods in the internals. The motivation here is
that these methods are difficult to work with individually
and in isolation because they are highly contextualized:
they are only ever called by other processes in the inter-
nals, and the caller object (i.e., self) of a given method
is not always predictable due to class inheritance.

Functions like ggtrace capture fn() obviate these
concerns. In the following example, it copies the behav-
ior of the compute group() method from the StatCount
ggproto (via stat="count"), at the precise moment it’s
called for the second group of the bar layer in bar p:

compute_grp_2 <- ggtrace_capture_fn(x = bar_p,

method = StatCount$compute_group , cond = 2L)

5

The returned function’s argument defaults (stored in the
formals) are the values that it was called with:

> names(formals(compute_grp_2))

[1] "self" "data" "scales" "width"

[5] "flipped_aes"

> formals(compute_grp_2)$data
x fill PANEL group

277 2 Chinstrap 1 2

278 2 Chinstrap 1 2

[... omitted 66 rows]

Thus, calling the function by itself replicates the method’s
original behavior. Here, it reveals the apply portion of the
Stat’s split-apply-combine design:

> compute_grp_2()

count prop x width flipped_aes

1 68 1 2 0.9 FALSE

But this is already possible with Inspect functions.
The unique significance of Capture functions is simulat-
ing the consequence of a user code on a specific internal
process. In this simple example, flipped aes=TRUE re-
flects the layer code orientation="y". Because the data
only has x, “counting by y” returns an empty dataframe:

> compute_grp_2(flipped_aes = TRUE)

[1] count prop width flipped_aes

<0 rows > (or 0-length row.names)

For advanced usecases, ggtrace capture fn() can
contextualize ggproto methods that are templatic and
semantically empty, like most methods of the parent
ggprotos, Stat and Geom. Additionally, for more sur-
gically precise procedures, another Capture workflow
function ggtrace capture env() can be used to return
a deep copy of a method’s runtime environment.

4.2 Highjack workflow

The Highjack workflow can directly manipulate the be-
havior of ggproto methods over the course of rendering
a plot. Not only is this useful for debugging and testing
for developers, but it also makes learning the internals of
ggplot2 immediately rewarding and fun for users.

The functions ggtrace highjack [args|return]()

share the same scope as the two Inspect functions from
Section 3, and take an additional value argument where
users can supply a custom input/output. As a simple ex-
ample, let us inflate the ymax value from the After Stat
of box p’s boxplot layer to stretch the upper whiskers.
We can either supply a modified After Stat dataframe,
or more conveniently to the same effect, pass an expres-
sion operating on returnValue(), which evaluates to the
value about to be returned by the method:

ggtrace_highjack_return(x = box_p,

method = ggplot2 ::: Layer$compute_statistic ,
value = quote ({

transform(returnValue (), ymax = 50)

}))

Additionally, the Highjack workflow is particularly
helpful for making low-level graphics with grid more ac-
cessible, by letting users piggy-back on the work of draw-
ing methods to achieve desired visual effects. Users can
get very far with just grid::editGrob() to manipulate
graphical object outputs, such as the width and linetype
of the whiskers created by the boxplot Geom.

ggtrace_highjack_return(x = box_p,

method = GeomBoxplot$draw_group , cond = 1:2,

value = quote ({

out <- returnValue ()

new <- editGrob(grob = out$children [[2]],
gp = gpar(lty=2, lwd=5))

out$children [[2]] <- new

out

}))

In this sense, the Highjack workflow offers a playground
for aspiring developers. Experienced developers may ben-
efit as well: they can sketch out a working design first with
minimally functioning code, and then work backwards to
figure out the necessary implementational details to pack-
age the solution into a proper ggproto extension.10

5 Conclusion

This paper surveyed the theoretical significance of sub-
layer modularity in the Grammar of Graphics as well as
the conceptual and practical challenges for users to ac-
quire this feature of the grammar, using ggplot2 as a case
study. I showcased ggtrace as a possible solution: it scaf-
folds the necessary mental model of internal processes by
offering a familiar, functional interface into ggplot2’s in-
ternal derivational system. The applications of ggtrace
as a pedagogical and debugging tool advances the prac-
tice and development of ggplot2 for statistical graphics
and data visualization more broadly.

6

Notes
1From an interview in the PolicyViz Podcast, Episode 201

(Schwabish, 2021). The verbatim quote is at the 12:32 mark.
2The correspondance between layer-internal components are de-

scribed broadly and may not reflect specific implementation-level
details. For example, some Positions in vega-lite falls under En-
coding, which is more like Aesthetics in ggplot2. This means
that Positions like PositionNudge in ggplot2 is implemented as
xOffset/yOffset Encodings in vega-lite. But for this simplistic
comparison I assume them to be at least conceptually comparable.

3Install via remotes::install github("yjunechoe/ggtrace").
ggtrace is not on CRAN because it calls the base::trace() de-
bugging function internally (hence the name), and such (off-label)
usage of debugging functions are generally dispreferred. Note that
there is also a different CRAN package by the same name, whose
development timeline overlapped with the ggtrace showcased here.

4stage(), after stat(), and after scale() were introduced in
ggplot2 v3.3.0, although the capability of after stat() has long
been available via the deprecated forms ..var.. and stat(var).

5The Layer object is not exported by ggplot2, hence it is ac-
cessed as ggplot2:::Layer. This paper does not advocate working
with Layer directly, beyond interactive exploration with ggtrace.

6The requirements are formally specified in $required aes. For
pedagogical purposes, I refer to the documentation for this infor-
mation as it is a more accessible and familiar resource to users.

7Relatedly, the ggbuilder package (Kay, 2022a) implements a
ggtrace-inspired model of sub-layer processes as user-facing func-
tions that allow users to incrementally build up layer specifications
in the order of the layer’s internal derivation.

8Interestingly, errors in ggplot2 have improved significantly in
v3.4.0 in a way that promotes the usability of ggtrace as a debug-
ging tool. For example, the full error message here also includes
which method caused the error (compute geom 1()) and in which
layer (“in 2nd layer”). These straightforwardly correspond to the
method and cond arguments of the Before Geom debugging code.

9In addition to the high-level workflow functions, ggtrace offers
the lower-level function ggtrace() and a general workflow function
with ggtrace(), both designed primarily for debugging and devel-
opment. These are beyond the scope of this paper.

10Though not the primary (nor a particularly recommended)
function of ggtrace, it can also be used to extend ggplot2

while bypassing the official ggproto-based extension mechanism
when it is too limiting. For example, see implementation
of crop coord polar() from the package MSBMisc (Ben-Shachar,
2022), which uses with ggtrace() to rescale the viewport of the
panel grobs by highjacking the Layout$render() method.

References

Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R.,
van Langen, J., and Kievit, R. A. (2021). Raincloud
plots: a multi-platform tool for robust data visualiza-
tion [version 2; peer review: 2 approved]. Wellcome
Open Res 2021, 4(61).

Ben-Shachar, M. S. (2022). MSBMisc: Some functions
I wrote that I find useful. R package version 0.0.1.14.
https://mattansb.github.io/MSBMisc.

Choe, J. (2022). ggtrace: Programmatically explore, de-
bug, and manipulate ggplot internals. R package version
0.5.3. https://github.com/yjunechoe/ggtrace.

Horst, A. M., Hill, A. P., and Gorman, K. B. (2020).
palmerpenguins: Palmer Archipelago (Antarctica) pen-
guin data. R package version 0.1.0.

Kay, M. (2022a). ggbuilder: A Data Flow Pipeline Ap-
proach to Building ggplot2 Layers. R package version
0.0.0.9000. https://mjskay.github.io/ggbuilder.

Kay, M. (2022b). ggdist: Visualizations of Distri-
butions and Uncertainty. R package version 3.2.0.
https://mjskay.github.io/ggdist/.

R Core Team (2022). R: A Language and Environment
for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria.

Satyanarayan, A., Moritz, D., Wongsuphasawat, K., and
Heer, J. (2017). Vega-lite: A grammar of interactive
graphics. IEEE Transactions on Visualization & Com-
puter Graphics (Proc. InfoVis).

Schwabish, J. (2021). Leland wilkinson and the grammar
of graphics. https://youtu.be/rE062dA-pT4.

Waskom, M. L. (2021). seaborn: statistical data visual-
ization. Journal of Open Source Software, 6(60):3021.

Wickham, H. (2010). A layered grammar of graph-
ics. Journal of Computational and Graphical Statistics,
19(1):3–28.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data
Analysis. Springer-Verlag New York.

Wickham, H. (2019). Advanced R, Second Edition. Chap-
man and Hall/CRC.

Wickham, H., Averick, M., Bryan, J., Chang, W., Mc-
Gowan, L. D., François, R., Grolemund, G., Hayes, A.,
Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller,
E., Bache, S. M., Müller, K., Ooms, J., Robinson, D.,
Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D.,
Wilke, C., Woo, K., and Yutani, H. (2019). Welcome
to the tidyverse. Journal of Open Source Software,
4(43):1686.

Wilkinson, L. (2005). The Grammar of Graphics.
Springer.

7

