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Introduction to cluster-based permutation analysis

Cluster-based permutation analysis (CPA) is a simulation-based, non-parametric statistical test of difference be-

tween groups in a time series (Maris and Oostenveld, 2007). It is suitable for analyzing densely-sampled time

series data, commonly encountered in eye movement and brain signal research where behavioral and neural mea-

sures are collected at high sampling rates (Ito and Knoeferle, 2023; Pernet et al., 2015).

CPA is a popular choice of analysis when the research hypothesis is specified up to the existence of an effect

over a window of time (as predicted by higher-order cognitive processes, for example) but agnostic to the temporal

details of the effect, such as the precise moment of its emergence and its shape. This is common in the cognitive

sciences. For instance, a researcher might conduct an experiment measuring looks to the target (vs. a distractor)

image in a visual scene over the course of several seconds. The high density of the resulting data (often thousands

of samples per trial) is problematic for traditional parametric methods such as repeated t-tests and ANOVAs, which

suffer from temporal autocorrelations and the multiple-comparisons problem (Piai et al., 2014).

CPA addresses these challenges by formalizing two notions of what it means for there to be a difference between

groups—loosely speaking, divergence between lines—in a time series:

1. The countable unit of effect (i.e., a cluster) is a contiguous span of sufficiently large differences between

groups that are evaluated at each time point. These time-wise differences are quantified using a proxy statistic

that is sensitive to both the magnitude and variability of difference between group means.

2. The degree of extremity of a cluster as a whole (i.e., the cluster-mass statistic) is the sum of the time-wise

differences that contribute to the cluster. This is the test-statistic for CPA.

In frequentist spirit, CPA first identifies the empirical clusters in a time series and tests the significance of their

cluster-mass statistics against permutations of the data reprsenting the null distribution. Observing an empirical

cluster whose cluster-mass statistic is unlikely to emerge under this permutation procedure is taken as evidence of

difference between groups in the time series as a whole (cf. Sassenhagen and Draschkow, 2019).

Motivation

CPA’s strengths lie in its flexibility: it can consume the entire stretch of the time series data without violating

non-independence and overfitting to local temporal dynamics. The interpretability of its results is also helped by the

fact that the researcher can choose the appropriate proxy statistic. This allows CPA to target specific contrasts

relevant to the research question, e.g., via a custom contrast-coding of regression terms.

At the same time, there are practical barriers to doing CPA well. Namely, CPAs are computationally expensive.

For example, an experiment involving 10-second stimuli with the response variable (e.g., looks to the target)

averaged over 20ms bins yields 500 data points along the time dimension. In turn, identifying clusters in the data

requires that many evaluations of the proxy statistic. This procedure is then repeated for each permutation of the

data; assuming a thousand simulations, that totals up to half-a-million time-wise tests of difference, be it t-tests,

ANOVAs, regressions, or another proxy.

Existing open-source implementations of CPA (R packages eyetrackingR, permutes, permuco, clusterperm,

among others) celebrate the strengths of its design, but do not prioritize overcoming this blatant performance

bottleneck in practice. For example, despite the “embarrassingly parallel” problem of independently simulated runs,

there have been little serious attempts at integrating parallelization. Moreover, user-facing functions often treat

CPA as a monolithic test despite its well-defined algorithmic steps; this design discourages researchers from fully

leveraging CPA’s flexibility and inspecting its assumptions on their data.

In face of such high costs to usability, researchers have remained overly cautious in the ways that they conduct

CPAs. Researchers often sacrifice the temporal resolution of the data by selecting a smaller window of analysis

and/or averaging the data over larger time bins. Researchers are also often forced to compromise on using less

sensitive tests to compute the proxy statistics, such as by averaging the data across items within each participant

and conducting t-tests on participant means, as opposed to fitting (generalized) mixed-effects regression models

which can account for such group-level conditional variances without sacrificing statistical power.
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Design of jlmerclusterperm

Against this backdrop, the R package jlmerclusterperm approaches CPA as first and foremost a computing

problem, recognizing that performance and usability impose non-trivial constraints on practicing good statistics. The

package specifically focuses on (mixed-effects) regression-based implementations of CPA and offers improvements in

the speed of execution, modularity of function design, interpretability of (intermediate) results, and interoperability

with related statistical software. We now discusses these considerations in turn.

Speed. Performance optimizations are brought about through two design choices. First, jlmerclusterperm

integrates Julia in the backend via the JuliaConnectoR package, using a tightly-coupled custom Julia module

built on top of the GLM and MixedModels libraries. This vastly improves the speed of fitting regression models to

compute the proxy statistics compared to in R (e.g., via lme4). Second, the simulations, by default, run multi-

threaded in the Julia subprocess, with appropriate infrastructural support including thread-safe RNGs. As a result,

CPAs can comfortably scale up to tens of thousands of permuted resamples.

Modularity. In addition to offering a one-stop function for CPA, jlmerclusterperm also exports a set of

functions corresponding to each of its algorithmic steps that can be ran in sequence to the same effect. This

encourages researchers to explore and validate CPA’s performance on their data. For example, one can selectively

diagnose the robustness of a particular cluster across different threshold values without re-running the entire CPA

from scratch. This modular design is also important for pedagogy: it makes internal computations more transparent

and emphasizes the fact that intermediate outputs are themselves visualizable, debuggable, and so on.

Interpretability. As is typical of research statistical software, the (intermediate) outputs of jlmerclusterperm

are complex objects whose structural details are uninteresting to the average user. Thus, jlmerclusterperm uses

lightweight S3 classes to implement custom print methods via the cli package, returning carefully formatted

console reports that highlight just the immediately useful information. Accessibility is further advanced through

the ample use of progress bars, messages, and early warnings for degenerate CPA specifications, among others.

Interoperability. jlmerclusterperm strives to seamlessly integrate with other tools in the statistical analysis

ecosystem. For example, it extends methods from generics such as glance() and tidy() for collecting statistical

objects as “tidy data” (Wickham, 2014) for a further inspection of results using familiar data-wrangling tools. The

R–Julia interface is also helped by the option to return pointers to internal Julia objects before they are collected

into R, allowing users to directly manipulate these lower-level objects in the Julia subprocess.

Conclusion

Development of jlmerclusterperm began in a seminar on eye movements research. This origin shaped its

priorities, emphasizing accessibility and pedagogy at every turn. Beyond the design of the software itself, these

values are promoted through its documentation, crafted to support researchers without expertise in statistical

computing themselves. The documentation website <https://yjunechoe.github.io/jlmerclusterperm> hosts several

tutorials on related topics in computing (reproducibility, asynchronous execution, etc.) as well as case studies that

replicate prior published results with comparisons (in performance and in API) to existing software.

Since its inception, jlmerclusterperm has found a place in both eye-tracking and brain signal research, with

over 10k downloads on CRAN. Its reliability is upheld through regular and rigorous testing on CRAN and GitHub

Actions, proving itself resilient amid the finicky aspects of R–Julia integration. Future directions include supporting

an extra spatial dimension in the permutation algorithm and offering native visualization capabilities.
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