Parametric bootstrap for Julia mixed effects models
Source:R/parametricbootstrap.R
parametricbootstrap.Rd
Parametric bootstrap for Julia mixed effects models
Usage
parametricbootstrap(
x,
nsim,
seed,
...,
optsum_overrides = list(ftol_rel = 1e-08)
)
Examples
# \donttest{
jlme_setup(restart = TRUE)
#> Starting Julia (v1.10.5) ...
#> Successfully set up Julia connection. (13s)
jmod <- jlmer(Reaction ~ Days + (Days | Subject), lme4::sleepstudy)
tidy(jmod)
#> # A tibble: 6 × 7
#> effect group term estimate std.error statistic p.value
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 fixed NA (Intercept) 251. 6.63 37.9 2.02e-314
#> 2 fixed NA Days 10.5 1.50 6.97 3.22e- 12
#> 3 ran_pars Subject sd__(Intercept) 23.8 NA NA NA
#> 4 ran_pars Subject cor__(Intercept).Da… 0.0813 NA NA NA
#> 5 ran_pars Subject sd__Days 5.72 NA NA NA
#> 6 ran_pars Residual sd__Observation 25.6 NA NA NA
samp <- parametricbootstrap(jmod, nsim = 100L, seed = 42L)
samp
#> <Julia object of type MixedModelBootstrap{Float64}>
#> MixedModelBootstrap with 100 samples
#> parameter min q25 median mean q75 max
#> ┌────────────────────────────────────────────────────────────────────────────
#> 1 │ β1 228.0 246.58 250.863 250.977 256.082 264.406
#> 2 │ β2 6.72055 9.91274 10.8382 10.696 11.6725 13.7769
#> 3 │ σ 21.6856 24.6536 25.6211 25.838 26.7439 30.5968
#> 4 │ σ1 3.57556 17.8908 22.1421 21.5799 25.6259 31.9446
#> 5 │ σ2 1.63637 4.53406 5.36349 5.47536 6.38651 8.34052
#> 6 │ ρ1 -0.739267 -0.226513 0.120712 0.107686 0.389495 1.0
#> 7 │ θ1 0.146373 0.675859 0.845334 0.839596 1.02343 1.29287
#> 8 │ θ2 -0.18147 -0.0508505 0.0248657 0.0155747 0.0708033 0.226194
#> 9 │ θ3 0.0 0.156785 0.193042 0.188678 0.238505 0.334108
#>
tidy(samp)
#> # A tibble: 6 × 6
#> effect group term estimate conf.low conf.high
#> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 fixed NA (Intercept) 251. 241. 263.
#> 2 fixed NA Days 10.5 7.73 13.5
#> 3 ran_pars Subject sd__(Intercept) 23.8 12.6 31.9
#> 4 ran_pars Subject cor__(Intercept).Days 0.0813 -0.595 1
#> 5 ran_pars Subject sd__Days 5.72 3.67 8.07
#> 6 ran_pars Residual sd__Observation 25.6 22.5 29.1
stop_julia()
# }